Finite simple groups of Lie type have non-principal p-blocks, p ≠ 2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

DEFECT ZERO p−BLOCKS FOR FINITE SIMPLE GROUPS

We classify those finite simple groups whose Brauer graph (or decomposition matrix) has a p-block with defect 0, completing an investigation of many authors. The only finite simple groups whose defect zero p−blocks remained unclassified were the alternating groups An. Here we show that these all have a p-block with defect 0 for every prime p ≥ 5. This follows from proving the same result for ev...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Units of p-power order in principal p-blocks of p-constrained groups

Let G be a finite group having a normal p-subgroup N that contains its centralizer CG(N), and let R be a p-adic ring. It is shown that any finite p-group of units of augmentation one in RG which normalizes N is conjugate to a subgroup of G by a unit of RG, and if it centralizes N it is even contained in N .

متن کامل

pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

let $g$ be a finite group‎. ‎a subset $x$ of $g$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $x$ do not commute‎. ‎in this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1985

ISSN: 0021-8693

DOI: 10.1016/0021-8693(85)90206-6